Descriptive Set Theory Lecture 14

the homeomorphism (x,y) +> (y,x) : X² -> X¹ naps one ho the other.

Since X is nonneager, we can let A be the least nonmager initial xquest, i.e. A=X or A= L'= [x EX: x 2 y 3. By the claim, L /A is nonneager. By K-ll again, there are nonmeagerly many y & A s.t. 25 is non-meager A But A' = 25 is a proper initial segment of A, iontradicting A being the least nonneager one.

Applications of Baice category to typ. groups.

Prop. A top. group is Baire <=> it itself is nonneager. Proof. HW.

Prop. A subgroup H of a Polish group h is Polish <=> H is closed. In that case, H is nonmeager <=> H is clopen. Proof Next HW

Pettis's Lemma. Let h be a top group at let A = h be BM.

Automatic Continuity let
$$G$$
 be a Baire top. grap I H be a upper
Table top. grap. Then any Baire weasurable
howown or phism $\Psi: G \rightarrow H$ is actually vertice.
Proof Continuity $z \Rightarrow continuity at every pt gefs, i.e. V open V34(j)
I open U3g ..t. $\Psi(U) \leq V$. Benne Ψ is a homom.,
this is quivated to untinuity at 1_{C_1} indeed, $\Psi(y)^{-1}V$
is an open neighbour hood of 1_H , so if $U \ni 1_G$ is open
a) $\Psi(U) \in \Psi(g)^1(V)$, then $\Psi(gU) = \Psi(g) \cdot U(U) \leq V$.
Now fix an open $V \ni 1_H$. We need to find an open $U \ni 1_G$
s.t. $\Psi(U) \leq V$. By the continuity of $(x, y) \mapsto xy^{-1}$, I open
 $W \gg 1_H$ it. $WW' \leq V$. We'll find $U \ni 1_G$ open set. $\Psi(u) \leq$
 WW' . Suppose for a moment that $\Psi''(W)$ is nonneager.
Then by Pettis's lenna, $\Psi''(W) \cdot (\Psi''(W))''$ contains an
open neighbourhood of 1_G . But because Ψ is a homom,
 $\Psi(U) \in (\Psi'(W) \cdot (\Psi'(W))^{-1}) = W \cdot W^{-1}$, so we are done.
But we don't have bet $\Psi''(W)$ is nonneager.
He let that be a cital deuse we trin H, then
 $H = U Wha. Thus, G = U \Psi'(Wha)$, so some $\Psi'(Wha)$ has
he be nonmeager. The cost of the proof is analogous
 $\Re = \frac{2}{2} \Theta$ to the abarc.$

$$\frac{M_{easure.}}{B(x)} \quad \text{freedly that for a top. space X, the Bord G-algebra B(x) is the o-algebra generated by the great scheme.
$$\frac{Def}{B(x)} \quad \text{A Borel measure } \mathcal{V} \text{ on } X \text{ is a map } \mathcal{V} : \mathcal{D}(X) \rightarrow [0, or]}{(i)} \quad \mathcal{V}(p) = 0$$

$$(ii) \quad \mathcal{V}(p) = 0$$

$$(ii) \quad \mathcal{V}(p) = 0$$

$$(ii) \quad \mathcal{V}(p) = 0$$

$$(iii) \quad \mathcal{V}(p) = 0$$

$$(iv) \quad \mathcal{V}(p) = 0$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(UB_n) \leq \mathcal{D}(B).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(UB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(UB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(MB_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(A_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(A_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(A_n) \leq \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(A_n) = \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(A_n) = \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(A_n) = \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(A_n) = \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad \mathcal{V}(A_n) = \mathcal{D}(B_n).$$

$$(v) \quad Upward watched is a baddlike: \quad$$$$

it has so about. For a Bund measure of on X and a Borel function f: X > Y, where Y is a nother top space at there Borel means that f (Borel) is Borel, we define the pushforward measure by f on Y, denoted $f_{*}\mu$, by $f_{*}\mu(B) := \mu(f^{T}(B))$, for each $B \in \mathcal{O}(Y)$.

Examples. (a) For any X and x EX, the Dirac measure at x, denoted Sx, is the measure that gives I to x $\Delta 0 \quad \text{fo} \quad \chi \setminus \{x_i\}, \quad \text{i.e.} \quad \forall \quad B \leq X, \\ \delta_x(B) = \begin{cases} 1 & \text{if} \quad B \neq x \\ 0 & \text{o.w.} \end{cases}$

This is a purely atomic measure I is defined on the Apple P(x)

(b) The Leversure on IRd, d< 00, is denoted by ha I is firstly defined on rectangles I. * Iz * ... * Id, where I k is an interval, by $\chi(I_1 \times I_2 \times \dots \times I_d) =$ lh(I). Ch(I). th (Id), and then extended to B(IRd) by Carotheodory's extension theorem, one you verify M & is ably additive on the algebra

yeurched by rectangles. Le is translation invariant, i.e. $\lambda_{a}(r+B) = \lambda_{a}(B) \forall r \in \mathbb{R}^{d}$.

(c) The with wirdle St has a natural rotation invariant probability measure on it by taking the push-bornaid of the lebessure measure on (0,1) by x H> e²⁷⁷ix, Minking of S' as a subset of C.